Unit 2: chemistry

Book 4: The Bohr model \& Periodic Trends

PART A: THE BOHR MODEL

Using Standard Atomic Notation

- On the upper left of the element symbol is the atomic
\qquad (rounded to the nearest whole number)
- On the lower left of the element symbol is the atomic

\qquad (number of protons).

Ex. Consider the element gold. Its symbol is Au. Its mass number is 197 and its atomic number is 79.
Written in standard atomic notation it becomes:
${ }_{79} \mathrm{Au}$

PRACTICE

Write the standard atomic notation for germanium, uranium, and colbalt.

Modeling Atoms with Bohr Diagrams

- Atoms are so \qquad that in order to study them, we need to create \qquad
- The current atomic model is known as the \qquad
- Electrons are always moving in 3D space around the \qquad
- The model that we will learn today represent the atom at \qquad
- It's a way of representing the \qquad of electrons in the "cloud"
- It's important to remember that an atomic model is a \qquad version of an atom, and it's completely \qquad in terms of \qquad

Bohr Diagrams

- A Bohr diagram is a diagram that shows how many \qquad are in each shell surrounding the nucleus.
- Named in honour of \qquad , a Danish physicist who developed several models for showing the arrangement of electrons in atoms.

- There are three main background questions to explore before we start drawing Bohr diagrams.

1. \qquad of a Bohr Diagram

2. How does an Electron's \qquad Correspond to its
\qquad

- Imagine climbing a \qquad . As you go up each rung, you gain more and more \qquad
- This is similar to the way in which electrons have
\qquad energy as they orbit \qquad from
 the nucleus
- The shells of an atom are named \qquad , \qquad , \qquad , and
\qquad going from \qquad to furthest from the

3. How do \qquad Fill the \qquad ?

Drawing a Bohr Diagram

1. Write the element's \qquad with the \qquad at the TOP left and the
\qquad at the BOTTOM left
2. \qquad the number of \qquad in the atom. Write the number of protons $\left(\mathrm{p}^{+}\right)$and neutrons $\left(\mathrm{n}^{\mathrm{O}}\right)$ as the \qquad
3. \qquad : How many electrons does the \qquad atom have?
4. \qquad the K shell. Fill the K shell with the first \qquad electrons. Make your electrons nice and \qquad !
5. Continue drawing each shell and \qquad with electrons until you have accounted for all the atom's electrons.

PRACTICE

In the diagram below, identify the elements by the Bohr model diagrams are shown. Write the symbols of the elements in the spaces provided.

PART B: VALEMCE ELECTRONS

- The electrons in the \qquad shell. These are the electrons that participate in chemical \qquad .
- Valence electrons can be shared or \qquad by another atom.
- Noble gases do not react unless under \qquad conditions. This is because their valence shell is \qquad .
- An atom that has lost valence electrons is a \qquad ion.
- An atom that has gained valence electrons is a \qquad ion.

PRACTICE

For the following Bohr diagrams, answer the following questions:

Number of protons \qquad Number of electron shells \qquad
Number of electrons \qquad Number of valence electrons \qquad

Ion or Atom \qquad

Number of electron shells \qquad
Number of protons -

Number of electrons \qquad Number of valence electrons \qquad

Ion or Atom \qquad

Number of protons
Number of electrons \qquad
Number of electron shells \qquad
Number of valence electrons \qquad

Ion or Atom \qquad

The following Bohr model diagram represents an oxygen atom.
Examine the diagram, then answer the following questions:
a) Why is this not a stable electron arrangement?

c) Use a different colored pen to adjust the diagram so that it shows a stable electron arrangement.

ASSIGNMENT \#1:Bohr Model Practice, Worksheet pages 6-8
This assignment is to be completed below in the space provided.

Use the innermost circle as the nucleus, and fill the electron shells with the correct number of electrons for each of the first 20 elements in the Periodic Table. eg. Hydrogen has been completed for you as an example.

1. What is the pattern between the number of valence electrons and the group number of the periodic table?
2. What is the pattern between the number of electron shells and the period number of the periodic table?

Drawing Bohr model diagrams

1. Refer to the Bohr model chart ABOVE to help you complete the following table. Some answers are provided for you. (Hint: Remember that the maximum number of electrons in the first three shells is 2,8 , and 8 .)

Atom/ion	Atomic number	Number of protons	Number of electrons	Number of electron shells
reor atorn	10	10	10	2
fluorine atom	9			
scodium ajom				
argon ciom				
chlorine atom				
potassium atom				

2. Use the table above to draw the Bohr model diagram for the following atoms and ions.

Argon atom	Chlorine atom	Potassium atom

Use your periodic table to answer the following.

	a. number of protons
	b. number of electron shells
	c. number of electrons
	d. number of electrons in outer shell
	e. element
	a. number of protons
	b. number of electron shells
	c. number of electrons
	d. number of electrons in outer shell
	e. element
	a. number of protons
	b. number of electron shells
	c. number of electrons
	d. number of electrons in outer shell
	e. element
	a. number of protons
	b. number of electron shells
	c. number of electrons
	d. number of electrons in outer shell
	e. element

These four elements are all in the same horizontal row (period) of the periodic table. What is the same about electron shells for elements in the same period?

What is different about the electrons in the outer shell for elements in the same period?

PART C: PERIODIC TABLE TRENDS

In chemistry the term \qquad refers to a regular pattern in the properties of elements based on their atomic structure.

This is the pattern that Mendeleev predicted. When the pattern repeated, he began a new \qquad .

The periodic table is a powerful tool for analyzing trends in \qquad and \qquad .

ATOMIC SIZE TRENDS:

Observe the sizes of the atoms in each group and period shown in the diagram below. Do you see a pattern?

1. Atomic size \qquad moving DOWN a group/column.

- as you move down a \qquad , elements have atoms with \qquad energy
\qquad .
- the \qquad the number of electron shells, the \qquad away from the nucleus the valence electrons are
- if the electrons are farther away, the atom is \qquad .

2. Atomic size \qquad moving LEFT to RIGHT across a period/row.

- elements have \qquad numbers of electrons in their \qquad shells as you move LEFT to RIGHT.
- as the number of electrons increases, so does the number of \qquad in the nucleus.
- the attraction between the n \qquad valence electrons and the
p \qquad nucleus is very strong.
- with each electron added, the outer shell is pulled \qquad to the nucleus and the atomic size \qquad

REACTIVITY TRENDS:

Compare what happens when potassium (A) and sodium (B) are added to water:

You can see that the reaction is \qquad vigorous and violent in 'A', water + potassium.

Why is this the case?
What is similar about potassium and sodium? \qquad
What is different about potassium and sodium? \qquad

- Because \qquad valence electrons are farther away from the nucleus than the electrons in a \qquad atom, the attraction to the nucleus is \qquad .
- Electrons further from the nucleus require \qquad energy (are easier) to remove.
- The adding and removing of electrons is what is involved in c \qquad r \qquad .
- This is why we would say that \qquad is more reactive than \qquad .

This pattern repeats throughout the periodic table with the exception of the noble gases.

- the noble gases have a FULL valence shell, they are stable and \qquad

PRACTICE

Non-metal Reactivity Increases

1. Explain why atoms get larger down a group on the periodic table:
2. Explain why atoms get smaller from LEFT to RIGHT across a periodic table:
3. Why is an alkali metal MORE reactive than an alkaline-earth metal in the same period?

LAB - REACTIVITY TRENDS IM THE PERIODIC TABLE

Periodic trends include both physical and chemical properties of elements. In this investigation, find out if (and how) the reactivity of metals relates to their position on the periodic table.

Question: Is there a relationship between the reactivity of a metal and its position in the periodic table?

Safety:

- Hydrochloric acid can burn skin. \qquad is the chemical formula for hydrochloric acid.
- Do not handle \qquad with your bare hands. Use the forceps instead.
- Clean up any spills and inform your teacher immediately.
- You must be wearing your goggles and apron until you have finished cleaning up your lab station.

Procedure:

1. Read the procedures completely and then design a table to record your observations below.
2. Using a spot plate place one piece of each type of metal (calcium \qquad , magnesium \qquad and aluminum \qquad) into a separate well. Do not pick up the calcium with your hands, use the forceps.
3. Fill a beaker half full with water. Using the dropper add 3-5 drops of water into each well that contains a piece of metal. Record your observations.
4. When the reactions stop, dispose of the liquid as directed by your teacher. You will use the magnesium and aluminum metals again for the next step.
5. Add $3-5$ drops of hydrochloric acid (HCl) to the remaining magnesium and aluminum samples. Record your observations and indicate the relative reactivity of each metal.
CAUTION: Be very careful when working with the hydrochloric acid. Acid can burn your skin. If you spill any acid solution on your hands, rinse it off immediately with cool water and inform your teacher.
6. Clean up your work area and dispose of materials as directed by your teacher.

Prediction: I think \qquad metal will be the most reactive.

Observations:

Table 1:

Analyze and Interpret:

1. Compare the reactivities of magnesium and calcium. Use evidence to support your comparison.
2. Compare the reactivities of magnesium and aluminum. Use evidence to support your comparison.
3. Which of the three metals was the most reactive? Which metal was the least reactive?
4. Did you make quantitative or qualitative observations during this lab?

Conclude and Communicate

1. a) Draw Bohr diagrams for magnesium, calcium and aluminum.
b) Does your understanding of atomic structure support your observations from this investigation? Justify your response.

Apply and Innovate:

1. What other metals could you test this way? Suggest two or three additional metals that you could test.
