Concept 4: Physical quantities contribute to different forms of energy.

- Physical quantities (e.g., height, mass, speed (velocity), etc.) can affect different forms of energy.
- For example, the higher the object is above the ground, the more gravitational potential energy it has.

Energy Equations

- Equation for mechanical kinetic energy (KE):

$$
E_{k}=1 / 2 \boldsymbol{m} v^{2}
$$

E_{k} mechanical kinetic energy (J)
m mass (kg)
v velocity (m / s)

Raynbow's Fall

- Raynbow weighs 12 kg and fell to the ground at a velocity of $5 \mathrm{~m} / \mathrm{s}$. How much kinetic energy did she hit the ground with?
- $E_{k}=1 / 2 \boldsymbol{m} \boldsymbol{v}^{2}$
- $E_{k}=1 / 2(12)(5)^{2}$
- $E_{k}=1 / 2(12)(25)$
- $E_{k}=150 \mathrm{~J}$

Energy Equations (continued)

Equation for gravitational potential energy (GPE):

$$
\boldsymbol{E}_{q}=m g \Delta h
$$

$E_{\mathrm{g}} \quad$ gravitational potential energy (J)
$m \quad$ mass (kg)

g	acceleration due to gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
h	height (m)

Raynbow's Fall

- Raynbow weighs 12 kg and is sitting 1.25 meters above the ground. How much potential energy does she have? Gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Raynbow's Fall

- Raynbow weighs 12 kg and is sitting 1.275 meters above the ground. How much potential energy does she have? Gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- $E_{g}=m g \Delta h$
- $E_{g}=(12)(9.8)(1.275)$
- $E_{g}=150 \mathrm{~J}$

Discussion Questions

1. What physical quantities affect
a) mechanical kinetic energy and mass and speed (velocity)
b) gravitational potential energy?
mass and height

Examples

A ball falls at $20 \mathrm{~m} / \mathrm{s}$ and weighs 9 kg . How much energy does it hit the ground with?

- $\mathrm{Ek}=1 / 2 \mathrm{mv}^{2}$
- $\mathrm{Ek}=1 / 2(9)(20)(20)$
- $\mathrm{Ek}=1800 \mathrm{~J}$

If the ball falls with 1000 J of energy how fast was the ball moving (hint find the ball's velocity)?

- $\mathrm{Ek}=1 / 2 \mathrm{mv}^{2}$
- $1000 \times 2=\left(1 / 2(9) v^{2}\right) \times 2$
- $2000 / 9=9 \mathrm{v}^{2} / 9$
- $\sqrt[2]{222.2}=\sqrt[2]{\mathrm{v}^{2}}$
- $\mathrm{v}=14.9 \mathrm{~m} / \mathrm{s}$

A boulder falls at $0.25 \mathrm{~m} / \mathrm{s}$ and hits the ground with 1200 J . What is the mass of the boulder?

- $\mathrm{Ek}=1 / 2 \mathrm{mv}^{2}$
- $1200=1 / 2 \mathrm{~m}(0.25)(0.25)$
- $1200 / 0.03125=0.03125 \mathrm{~m} / 0.03125$
- 38400 kg

