Section 4.1: Atomic Theory and Bonding
ATOMS AND COMPOUNDS

- An **atom** is the **smallest particle** of an element that still has the **properties** of that element
 - An atom = proton(s) + neutron(s) + electron(s)

- Atoms **join together** to form **compounds**.
 - A compound is a **pure substance** that is composed of **two or more atoms** combined in a **specific way**.
 - Oxygen and hydrogen are atoms/elements; H₂O is a compound.

- A **chemical change** occurs when the **arrangement** of atoms in compounds **changes** to form **new** compounds.
Atomic Theory

- Atoms are comprised of 3 subatomic particles

Table 4.1 Subatomic Particles

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Electric Charge</th>
<th>Location in the Atom</th>
<th>Relative Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton</td>
<td>p</td>
<td>1+</td>
<td>Nucleus</td>
<td>1836</td>
</tr>
<tr>
<td>Neutron</td>
<td>n</td>
<td>0</td>
<td>Nucleus</td>
<td>1837</td>
</tr>
<tr>
<td>Electron</td>
<td>e</td>
<td>1−</td>
<td>Surrounding the nucleus</td>
<td>1</td>
</tr>
</tbody>
</table>
ATOMIC THEORY

- The **center** of an atom is called the **nucleus**.
 - The nucleus is composed of protons and neutrons.
 - Electrons exist in the space surrounding the nucleus.
 - \# of protons = \# of electrons in every atom
 - Nuclear charge = charge on the nucleus = \# of protons
 - Atomic number = \# of protons = \# of electrons
In the periodic table, elements are listed in order by their atomic number.

- Metals are on the left (the transition metals range from group 3 to group 12), non-metals are on the right, and the metalloids form a “staircase” toward the right side.

- Rows of elements (across) are called periods.
 - All elements in a period have their electrons in the same general area around their nucleus.

- Columns of elements are called groups, or families.
 - All elements in a family have similar properties and bond with other elements in similar ways.
 - Group 1 = alkali metals
 - Group 2 = alkaline earth metals
 - Group 17 = the halogens
 - Group 18 = noble gases
The Periodic Table

Where are the following?

- Atomic number
- Period
- Group/Family
- Metals
- Non-metals
- Transition metals
- Metalloids
- Alkali metals
- Alkaline earth metals
- Halogens
- Noble gases

Based on mass of C-12 at 12.00.

Any value in parentheses is the mass of the most stable or best known isotope for elements that do not occur naturally.
PERIODIC TABLE AND ION FORMATION

- Atoms gain and lose electrons to form bonds.
 - The atoms become electrically charged particles called ions.
 - Metals lose electrons and become positive ions (cations).
 - Some metals (multivalent) lose electrons in different ways.
 - For example, iron, Fe, loses either two (Fe$^{2+}$) or three (Fe$^{3+}$) electrons.
 - Non-metals gain electrons and become negative ions (anions).
 - Atoms gain and lose electrons in an attempt to have the same number of valence electrons (electrons farthest from the nucleus) as the nearest noble gas in the periodic table.
BOHR & LEWIS DIAGRAMS
BOHR DIAGRAMS

- Show the arrangement of electrons in shells around the nucleus of an atom.
 - 1\text{st} shell = max. 2 electrons
 - 2\text{nd} shell = max. 8 electrons
 - 3\text{rd} shell = max. 8 electrons
 - 4\text{th} shell = max. 18 electrons
The outermost shell that contains electrons is called the **valence shell**, and the electrons in this shell are called **valence electrons**.
ELECTRON ORBITALS/ SHELLS

nucleus composed of 20 protons and 20 neutrons
BOHR DIAGRAMS CONTINUED

- **Period (row)** number of element = **number of occupied shells** for that element

- Elements in the same **family (column)** have the same **number of valence electrons**.
An atom’s **ion charge** on the periodic table tells you how many electrons the atom will lose or gain to fill its valence shell.
BOHR DIAGRAMS OF IONS

- **Metal atoms** lose electrons to have a full valence shell (become positive cations).
 - Ex. Magnesium loses two electrons from its valence shell and forms a magnesium ion (Mg^{2+}).
 - The Bohr Diagram for a Mg^{2+} ion will have two less electrons and square brackets around it with a 2+ charge.
BOHR DIAGRAMS OF IONS

- **Non-metal atoms** gain electrons to have a full valence shell (become negative **anions**).
 - Ex. Sulfur gains two electrons into its valence shell and forms a sulfur ion (S^{2-}).
 - The Bohr Diagram for a S^{2-} ion will have two more electrons and square brackets around it with a 2$^-$ charge.
FORMATION OF COMPOUNDS

- Valence electrons are involved in chemical bonding between elements.

- Noble gases have a full valence shell so they don’t form compounds!
FORMING COMPOUNDS

- Ionic bonds form when electrons are transferred from positive ions to negative ions.

- Covalent bonds form when electrons are shared between two non-metals.

- Electrons stay with their atom but overlap with other shells.
FORMING COMPOUNDS – IONIC BONDS

- Ionic bonds are formed between positive ions and negative ions.
 - For example, lithium and oxygen form an ionic bond in the compound Li₂O.
FORMING COMPOUNDS – COVALENT BONDS

- Covalent bonds are formed between two or more non-metals.
 - Electrons are shared between atoms.

Diagram:
- Hydrogen + Fluorine → Hydrogen fluoride
- Electrons are shared
LEWIS Diagrams

- They illustrate chemical bonding by showing only an atom’s valence electrons and the chemical symbol.
 - **Dots** representing **electrons** are placed around the element symbols.
 - Electron dots are placed **singly until the fifth electron** is reached then they are paired.
LEWIS DIAGRAMS OF IONS AND IONIC BONDS

- For **positive ions**, electron dots are **removed**.
- For **negative ions**, electron dots are **added**.
- Square brackets are placed around each ion to indicate transfer of electrons.

\[
\text{Na}^+ \quad \text{Cl}^- \\
\text{[Na]}^+ \quad \text{[Cl]}^- \\
\]

\[
\text{Mg}^{2+} \quad \text{O}^{2-} \quad \text{Br}^- \quad \text{Ba}^{2+} \quad \text{Br}^- \\
\text{MgO} \quad \text{BaBr}_2
\]
LEWIS DIAGRAMS OF COVALENT BONDS

- Like Bohr diagrams, valence electrons are drawn to show sharing of electrons.

- The **shared pairs** of electrons are usually **drawn** as a **straight line**.

\[\text{H} . + \text{F} . \rightarrow \text{H} \text{F} . \text{ or } \text{H} - \text{F} . \]

This line represents the pair of electrons shared by the atoms.
Lewis Diagrams of Diatomic Molecules

- Diatomic Molecules form between two atoms of the same type.

![Diatomic Molecules Diagram]

Wrong, this has too many electrons!
Wrong, no octet
Correct, Double bond obeys the octet rule.