CHEMISTRY 9 REVIEW & INTRO TO CHEMISTRY 10 Section 4.1: Atomic Theory and Bonding

ATOMS AND COMPOUNDS

- An <u>atom</u> is the <u>smallest particle</u> of an element that still has the <u>properties</u> of that element
 - An atom = proton(s) + neutron(s) + electron(s)
- Atoms join together to form compounds.
 - A compound is a <u>pure substance</u> that is composed of <u>two or more atoms</u> combined in a <u>specific way</u>.
 - Oxygen and hydrogen are atoms/elements; H₂O is a compound.
- A <u>chemical change</u> occurs when the <u>arrangement</u> of atoms in compounds <u>changes</u> to form <u>new</u> compounds.

ATOMIC THEORY

Atoms are comprised of 3 subatomic particles

Table 4.1 Subatomic Particles							
Name	Symbol	Electric Charge	Location in the Atom	Relative Mass			
Proton	р	1+	Nucleus	1836			
Neutron	n	0	Nucleus	1837			
Electron	e	1—	Surrounding the nucleus	1			

ATOMIC THEORY

- The <u>center</u> of an atom is called the <u>nucleus</u>.
 - The nucleus is composed of protons and neutrons.
 - Electrons exist in the space surrounding the nucleus.
 - # of protons = # of electrons in every atom
 - Nuclear charge = charge on the nucleus = # of protons
 - Atomic number = # of protons = # of electrons

ORGANIZATION OF THE PERIODIC TABLE

- In the periodic table elements are listed in order by their atomic number.
 - Metals are on the left (the transition metals range from group 3 to group 12), non-metals are on the right, and the metalloids form a "staircase" toward the right side.
 - Rows of elements (across) are called periods.
 - All elements in a period have their electrons in the same general area around their nucleus.
 - Columns of elements are called groups, or families.
 - All elements in a family have similar properties and bond with other elements in similar ways.
 - Group 1 = alkali metals
 - Group 2 = alkaline earth metals
 - Group 17 = the halogens
 - Group 18 = noble gases

	THE PERIODIC TABLE								Where are the following?									
1 +						Pe	riodic	Table o	of the I	Elemen	its					I +	10	Atomic number
H Hydrogen 1.0												1 1 1 1				H tydrogen I.O	2 0 He Helium	Period
1 3 + Li Lithium	2 4 2+ Be Beryllium											13 5 B Boron	6 C Carbon	15 7 3– N Nitrogen	16 8 2- O _{Oxygen}	17 9 – F Fluorine	4.0 10 0 Ne Neon	Group/Family
6.9 11 + Na	9.0 12 2+ Mg											10.8 13 3+ Al	12.0 14 Si	14.0 15 3– P	16.0 16 2- S	19.0 17 - CI	20.2 18 0 Ar	Metals
23.0 19 +	24.3 20 2+	3 21 3+	4 22 4+	5 23 5+ 4+	6 24 3+ 2+	7 25 2+ 3+	8 26 3+	9 27 2+ 3+	10 28 2+	11 29 2+	12 30 2+	Auminum 27.0 31 3+	28.1 32 4+	31.0 33 3–	32.1 34 2-	35.5 35 -	Argon 39.9 36 0	Non-metals
K Potassium 39,1	Calcium 40.1	Scandium 45.0	TI 3+ Titanium 47.9	V Vanadium 50.9	Chromium 52.0	Mn 4+ Manganese 54.9	Fe 24 Iron 55.8	Cobalt 58.9	Ni Str Nickel 58.7	Cu 1+ Copper 63.5	Zn ^{Zinc} 65.4	Ga Gallum 69.7	Germanium 72.6	As Arsenic 74.9	Se Selenium 79.0	Br Bromine 79.9	Kr Krypton 83.8	Transition
37 + Rb Rubidium 85.5	38 2+ Sr Strontium 87.6	39 3+ Y Yttrium 88.9	40 4+ Zr Zirconium 91.2	41 3+ Nb 5+ Nobium 92.9	42 2+ Mo 3+ Molybdenum 95.9	43 7+ Tc Technetium (98)	44 3+ Ru 4+ Ruthenium 101.1	45 3+ Rh 4+ Rhodium 102.9	46 2+ Pd 4+ Palladium 106.4	47 1+ Ag Silver 107.9	48 2+ Cd Cadmium 112.4	49 3+ In Indium 114.8	50 4+ Sn 2+ Tin 118.7	51 3+ Sb 5+ Antimony 121.8	52 2- Te Tellurium 127.6	53 – I Iodine 126.9	54 0 Xe Xenon 131.3	motolo
55 + Cs Cesium	56 2+ Ba Barium	57 3+ La Lanthanum	72 4+ Hf Hafnium	73 5+ Ta Tantalum	74 6+ W Tungsten	75 4+ Re 7+ Rhenium	76 3+ Os 4+ Osmium	77 3+ Ir 4+	78 4+ Pt 2+ Platinum	79 3+ Au ¹⁺ Gold	80 2+ Hg 1+ Mercury	81 1+ TI 3+ Thallium	82 2+ Pb 4+ Lead	83 3+ Bi ⁵⁺ Bismuth	84 2+ Po 4+ Polonium	85 – At Astatine	86 0 Rn Radon	
132.9 87 +	137.3 88 2+	138.9 89 3+	178.5 104	180.9 105	183.8 106	186.2 107 Bb	190.2 108	192.2 109	195.1 110	197.0 111 P C	200.6	204.4 113	207.2	209.0 115	(209) 116	(210) 117	(222) 118	Metalloids
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	Darmstadtium (281)	Roentgenium (272)	Ununbium (285)	Ununtrium (284)	Ununquadium (289)	Ununpentium (288)	Ununhexium (292)	Ununseptium (?)	Ununoctium (294)	Alkali metals
Based on	mass of C	-12 at 12	\int_{0}^{0}	58 3+ Ce 4+	59 3+ Pr 4+	60 3+ Nd	61 3+ Pm	62 3+ Sm 4+	63 3+ Eu 2+	64 3+ Gd	65 3+ Tb 4+	66 3+ Dy	67 3+ Ho Holmium	68 3+ Er	69 3+ Tm 2+	70 3+ Yb 2+	71 3+ Lu	Alkaline earth metals
Any value s the mas	in parent s of the m pest know	heses nost n isotope	for	140.1 90 4+ Th Thorium	140.9 91 5+ Pa 4+ Protactinium	144.2 92 6+ U 4+ Utanium 228 0	(145) 93 5+ Np 3+ Np 4+ Neptunium 6+	150.4 94 4+ Pu 6+ 3+ Putorium 5+	152.0 95 3+ Am 4+ 5+ Americium 6+	157.3 96 3+ Cm Curium	158.9 97 3+ Bk 4+ Berkelium	162.5 98 3+ Cf Californium (25.1)	164.9 99 3+ Es Einsteinium	167.3 100 3+ Fm Fermium	168.9 101 2+ Md 3+ Mendelevium (25.8)	173.0 102 2+ No 3+ Nobelium	175.0 103 3+ Lr Lawrencium (262)	• Halogens
elements	that do no	ot occur na	aturally.	232.0	231.0	236.0	(237)	(244)	(243)	(247)	(247)	(201)	(202)	(257)	(206)	(259)	(202)	Noble gases

PERIODIC TABLE AND ION FORMATION

- Atoms gain and lose electrons to form bonds.
 - The atoms become electrically charged particles called ions.
 - Metals lose electrons and become positive ions (cations).
 - Some metals (multivalent) lose electrons in different ways.
 - For example, iron, Fe, loses either two (Fe²⁺) or three (Fe³⁺) electrons
 - Non-metals gain electrons and become negative ions (anions).
 - Atoms gain and lose electrons in an attempt to have the same number of valence electrons (electrons farthest from the nucleus) as the nearest noble gas in the periodic table.

19 +	+ 20 2+	21 3+
K	Ca	Sc
Potassium	n Calcium	Scandium
39.1	40.1	45.0
K Potassium 39.1	Ca Calcium 40.1	Sc Scandium 45.0

25 M	2+ n 3+ 4+	26 Fe	3+ 2+	27 Co	2+ 3+
Mar	nganese	Iron		Cobalt	
54	.9	55.8		58.9	

~

8 2-	9 –	10 0
0	F	Ne
Oxygen	Fluorine	Neon
16.0	19.0	20.2

Bohr & Lewis Diagrams

8

BOHR DIAGRAMS

- Show the arrangement of electrons in shells around the nucleus of an atom.
 - 1st shell = max. 2 electrons
 - 2nd shell = max. 8 electrons
 - 3rd shell = max. 8 electrons
 - 4th shell = max. 18 electrons

The outermost shell that contains electrons is called the valence shell, and the electrons in this shell are called valence electrons.

ELECTRON ORBITALS/SHELLS

11

BOHR DIAGRAMS CONTINUED

 Period (row) number of element = number of occupied shells for that element

 Elements in the same family (column) have the same number of valence electrons.

BOHR DIAGRAMS OF IONS

 An atom's ion charge on the periodic table tells you how many electrons the atom will lose or gain to fill its valence shell.

BOHR DIAGRAMS OF IONS

- Metal atoms lose electrons to have a full valence shell (become positive cations).
 - Ex. Magnesium loses two electrons from its valence shell and forms a magnesium ion (Mg²⁺).
 - The Bohr Diagram for a Mg²⁺ ion will have two less electrons and square brackets around it with a 2+ charge.

BOHR DIAGRAMS OF IONS

- Non-metal atoms gain electrons to have a full valence shell (become negative anions).
 - Ex. Sulfur gains two electrons into its valence shell and forms a sulfur ion (S²⁻).
 - The Bohr Diagram for a S²⁻ ion will have two more electrons and square brackets around it with a 2charge.

FORMATION OF COMPOUNDS

 Valence electrons are involved in chemical bonding between elements.

 Noble gases have a full valence shell so they don't form compounds! FORMING COMPOUNDS

 Ionic bonds form when electrons are transferred from positive ions to negative ions.

 Covalent bonds form when electrons are shared between two non-metals.

 Electrons stay with their atom but overlap with other shells.

FORMING COMPOUNDS – IONIC BONDS

- Ionic bonds are formed between positive ions and negative ions.
 - For example, lithium and oxygen form an ionic bond in the compound Li₂O.

FORMING COMPOUNDS – COVALENT BONDS

- Covalent bonds are formed between two or more non-metals.
 - Electrons are shared between atoms.

LEWIS DIAGRAMS

- They illustrate chemical bonding by showing only an atom's valence electrons and the chemical symbol.
 - Dots representing electrons are placed around the element symbols
 - Electron dots are placed singly until the fifth electron is reached then they are paired.

20

LEWIS DIAGRAMS OF IONS AND IONIC BONDS

- For **positive ions**, electron dots are **removed**.
- For **negative ions**, electron dots are **added**.
- Square brackets are placed around each ion to indicate transfer of electrons.

LEWIS DIAGRAMS OF COVALENT BONDS

- Like Bohr diagrams, valence electrons are drawn to show sharing of electrons.
- The shared pairs of electrons are usually drawn as a straight line.

LEWIS DIAGRAMS OF DIATOMIC MOLECULES

Diatomic Molecules form between two atoms of the same type.

