Unit 1

Slope and Rate of Change

Section 1.1

RISE OVER RUN

Ratio

- A ratio is the ability to compare two numbers
- Examples
- $1 / 2$
- 1:2
- If we need 1 litre of oil for every 10 litre of gas the ratio is
- 1:10 or $1 / 10$

Proportion

- This a comparison between ratios
- This means that you take the initial ratio and compare it to the information given
- Example:
- If we have a ratio of $1 / 2$ where 1 is the amount of salt in cups and 2 is the amount of water litres. What happens if the amount of water is increased to 6 litres? How much salt do we need in cups?

Slope

- Other terms for slope
- Pitch
- Slant
- Steepness
- Slope is a type of ratio
- Slope compares vertical distance (rise) over horizontal distance (run)

Slope Continued

- Slope can we written with an m
- $m=\frac{\text { rise }}{\text { run }}$
- $m=\frac{R}{r}$

Section 1.2

GRADE, ANGLE OR ELEVATION AND DISTANCE

Pythagorean theorem

$$
a^{2}+b^{2}=c^{2}
$$

The Tangent Ratio

- Tangent ratio = the ratio of the length of the side opposite an angle to the side adjacent to an angle

Slope and Tangent Ratio

- $m=\frac{a}{b}$
- $\tan A=\frac{a}{b}$

Types of Angles

- Angle of depression is like looking down (example looking down at a fish in a pond)
- Angle of elevation is like looking up (example looking up at a telephone pole)

Grade

- Slope of a road is call grade

$$
\text { percent grade }=\frac{\text { rise }}{\text { run }} \times 100
$$

percent grade $=m \times 100$

Pitch

- When considering the slope of a roof the term pitch is often used to describe it
- Have to consider create right angle triangles to determine the slope.

Section 1.3

RATE OF CHANGE

Slope of a line on a graph

- Slope on a line graph is important
- It indicates the rate of change between two sets of values
- Those on the x-axis (horizontal)
- And those on the y-axis (vertical)

Slope of a line on a graph

- To get the slope of the line you need to select 2 points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ($\mathrm{x}_{2}, \mathrm{y}_{2}$)
- The formula using those two points is a follows:
- $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Positive slope

- In positive slope the line is going up from left to right

Negative Slope

- This type of slope occurs when the graph goes down from left to right

Rate of Change

- Rate of change compares one variable to another and relates how they change in comparison to each other
- The rate of change in this graph is distance to time
- Independent Variable = time
- Dependent Variable = distance

Types of Variables

- Independent variables can be selected freely for they do not rely on other values
- Dependent variables rely on the value of another variable

How to determine the general formula

- From the graph every point will simplify to $40 / 1$ which is $40 \mathrm{mi} / \mathrm{h}$
- The value was determined by taking the value 80 and dividing by 2 (the first point on the graph)

- To determine distance the general formula will be
- $d_{1}=40 t$
- $d_{1}=40(1)$
- $d_{1}=40$

