Unit 1

Slope and Rate of Change

Section 1.1

RISE OVER RUN

Ratio

- A ratio is the ability to compare two numbers
- Examples
 - 1/2
 - 1:2
 - If we need 1 litre of oil for every 10 litre of gas the ratio is
 - 1:10 or 1/10

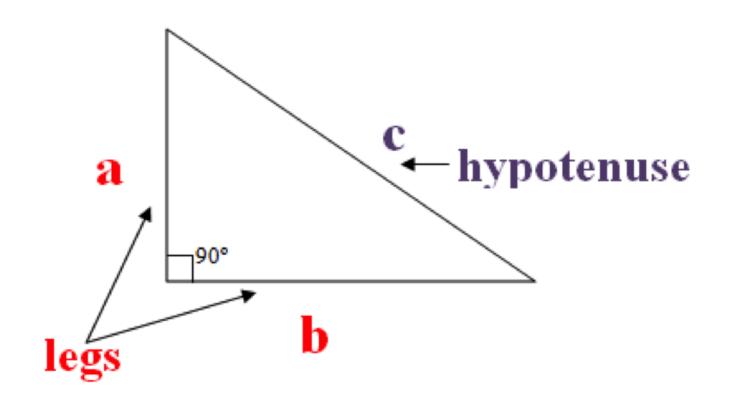
Proportion

- This a comparison between ratios
- This means that you take the initial ratio and compare it to the information given
- Example:
- If we have a ratio of ½ where 1 is the amount of salt in cups and 2 is the amount of water litres. What happens if the amount of water is increased to 6 litres? How much salt do we need in cups?

Slope

- Other terms for slope
 - Pitch
 - Slant
 - Steepness
- Slope is a type of ratio
- Slope compares vertical distance (rise) over horizontal distance (run)

Slope Continued

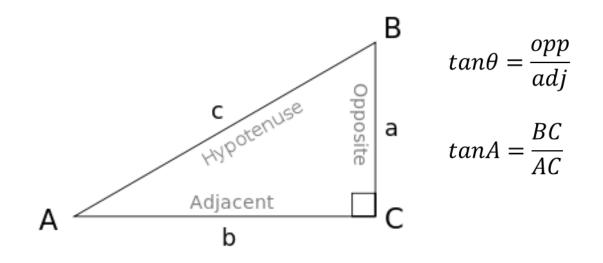

• Slope can we written with an m

•
$$m = \frac{rise}{run}$$

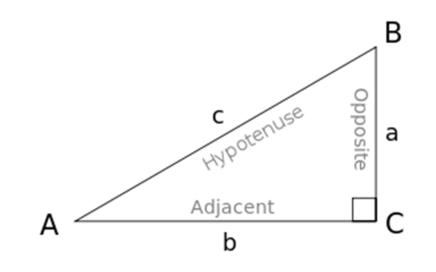
• $m = \frac{R}{r}$

GRADE, ANGLE OR ELEVATION AND DISTANCE

Section 1.2


Pythagorean theorem

 $a^2 + b^2 = c^2$


The Tangent Ratio

 Tangent ratio = the ratio of the length of the side opposite an angle to the side adjacent to an angle

Slope and Tangent Ratio

• $m = \frac{a}{b}$ • $tanA = \frac{a}{b}$

Types of Angles

 Angle of depression is like looking down (example looking down at a fish in a pond)

• Angle of elevation is like looking up (example looking up at a telephone pole)

Grade

• Slope of a road is call grade

$$percent \ grade = \frac{rise}{run} \times 100$$

percent grade = $m \times 100$

Pitch

• When considering the slope of a roof the term pitch is often used to describe it

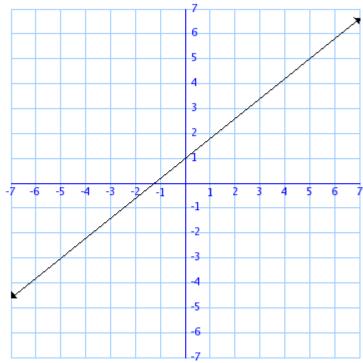
• Have to consider create right angle triangles to determine the slope.

Section 1.3

RATE OF CHANGE

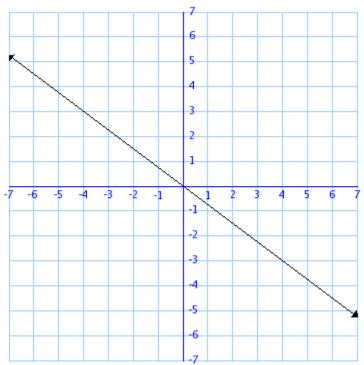
Slope of a line on a graph

- Slope on a line graph is important
- It indicates the rate of change between two sets of values
 - Those on the x-axis (horizontal)
 - And those on the y-axis (vertical)

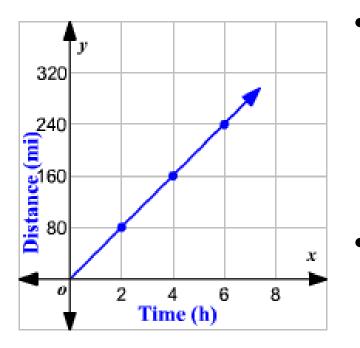

Slope of a line on a graph

- To get the slope of the line you need to select 2 points (x₁, y₁) and (x₂,y₂)
- The formula using those two points is a follows:

•
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$


Positive slope

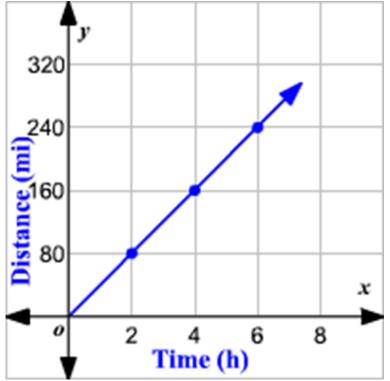
 In positive slope the line is going <u>up</u> from left to right



Negative Slope

This type of slope occurs when the graph goes
<u>down</u> from left to right

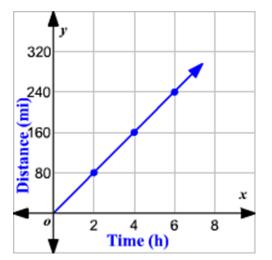
Rate of Change



- Rate of change compares one variable to another and relates how they change in comparison to each other
- The rate of change in this graph is distance to time
- Independent Variable = time
- Dependent Variable = distance

Types of Variables

 Independent variables can be selected freely for they do not rely on other values


 Dependent variables rely on the value of another variable

How to determine the general formula

• From the graph every point will simplify to 40/1 which is 40 mi/h

 The value was determined by taking the value 80 and dividing by 2 (the first point on the graph)

- To determine distance the general formula will be
 - d₁=40t
 - d₁=40(1)
 - d₁=40