\qquad
\qquad

JELLYBEAN BALANCING

In this activity, you will learn to balance chemical reactions by using candy to represent the atoms involved in a chemical reaction. You may not eat your candy until instructed to do so!

Getting Started

WASH/SANITIZE YOUR HANDS BEFORE OBTAINING THE CANDY! Working with your partner, obtain the proper number of each colour candy. The chart below will serve as a reference for constructing the equations.

ATOM	$\mathbf{0}$	H	Na	CI	K	Ca
Jellybean Colour	Pink OR Red	Yellow	Purple	Green	Orange	White
Number	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{2}$

Understanding Balanced Chemical Equations

When chemicals react, atoms are conserved. That means that there must be the same number of each atom on each side of the arrow.

Look at the reaction! $\mathbf{H}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{H}_{\mathbf{2}} \mathbf{O}$
Try to represent this reaction below by using your candy (put Jellybeans in the boxes).

\mathbf{H}_{2}	+	\mathbf{O}_{2}	\rightarrow	$\mathbf{H}_{2} \mathbf{O}$

Now answer the following questions while viewing the boxes above.
How many hydrogen candies are on the left side of the arrow? \qquad
How many oxygen candies are on the left side of the arrow?! \qquad
How many hydrogen candies are on the right side of the arrow? \qquad
How many oxygen candies are on the right side of the arrow?! \qquad
Is the equation, as it was originally written, a balanced equation? \qquad
\qquad
\qquad

JELLYBEAN BALANCING

Now you will "ADJUST" the equation so that IT IS BALANCED. Some key ideas to remember...
\square You may not change the chemical formula for any item.

- $\mathbf{H}_{\mathbf{2}}$ MUST STAY $\mathbf{H}_{\mathbf{2}}$
- $\mathbf{O}_{\mathbf{2}}$ MUST STAY $\mathbf{O}_{\mathbf{2}}$
- $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ MUST STAY $\mathbf{H}_{\mathbf{2}} \mathbf{O}$
\boxtimes You may use more candy to make more whole molecules of any individual product or reactant.
$\bigcirc H_{2}$ is a "whole molecule"...so you can make more H_{2} 's
- O_{2} is a "whole molecule"...so you can make more \mathbf{O}_{2} 's
- $\mathrm{H}_{2} \mathrm{O}$ is a "whole molecule"...so you can make more $\mathrm{H}_{2} \mathrm{O}$'s

च You may not add individual atoms (pieces of candy) to either side.

- H_{2} is a "whole molecule"...so you can ADD more H_{2} 's
- \mathbf{O}_{2} is a "whole molecule"...so you can ADD more $\mathbf{O}_{2}{ }^{\prime} \mathbf{s}$
- $\mathrm{H}_{2} \mathrm{O}$ is a "whole molecule"...so you can ADD more $\mathrm{H}_{\mathbf{2}} \mathbf{O}$'s

Now try adding "WHOLE MOLECULES" to make the equation balanced.

H_{2}	+	\mathbf{O}_{2}	\rightarrow	$\mathrm{H}_{2} \mathbf{O}$

Now count the number of EACH TYPE OF WHOLE MOLECULE.
How many H_{2} 's do you have? \qquad
How many O_{2} 's do you have? \qquad
How many $\mathrm{H}_{2} \mathrm{O}$'s do you have? \qquad
***These are your NEW COEFFICIENTS of the equation. Fill them in the spaces below.

$$
\ldots \quad \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow \quad \mathrm{H}_{2} \mathrm{O}
$$

Now answer the following questions.
\qquad
\qquad
JELLYBEAN BALANCING
How many hydrogen candies are on the left side of the arrow? \qquad
How many oxygen candies are on the left side of the arrow? \qquad
How many hydrogen candies are on the right side of the arrow? \qquad
How many oxygen candies are on the right side of the arrow? \qquad
Is the equation a balanced equation? \qquad
Now you will do the same thing with the following equations. Check with your teacher when done.

Put the initial compounds in the boxes BEFORE adding whole molecules!!!
REACTION 2: Sodium Chloride plus Calcium Oxide produces Sodium Oxide plus Calcium Chloride

REACTION 3: Potassium Chlorate yields Potassium Chloride plus Oxygen

\qquad

JELLYBEAN BALANCING
REACTION 4: Potassium Hydroxide plus Sodium produces Sodium Hydroxide plus Potassium

$\mathbf{K O H}$	+	$\mathbf{N a}$	\rightarrow	$\mathbf{N a O H}$	$\mathbf{+}$	\mathbf{K}

$\mathrm{KOH}+{ }^{+} \mathrm{Na} \rightarrow$ _ $\mathrm{NaOH}+$ \qquad
CHECK WITH YOUR TEACHER NOW...IF CORRECT YOU CAN EAT!!!

Post Lab Question

1.) Why do you see $O X Y G E N$ as O_{2} and Hydrogen as H_{2} ? (look at your notes as we have discussed this)

