

General Characteristics of Protists

- Protists are:
 - <u>Eukaryotic</u>
 - Unicellular
 - Most <u>solitary</u>, though some <u>colonize</u>.
 - Some <u>Autotrophic</u>, some <u>Heterotrophic</u>
 - Share characteristics with <u>plants</u>, <u>animals</u> and <u>fungi</u>.
 - Primarily <u>aquatic</u>.

Two types of Protists

- <u>Zooplankton</u>: (Left) <u>Animal</u> like, <u>capture</u> their own food, <u>Hetero</u>trophic. (Paramecium)
- <u>Phytoplankton</u>: (Right) <u>Plant</u> like, produce their own food, <u>Auto</u>trophic. (Euglena)

Animal-Like Protists

- They are <u>classified</u> based on their type of <u>movement</u>, how they <u>feed</u> and how they <u>reproduce</u>.
- Phylum Zoomastigina
- Phylum Sarcodina
- Phylum Ciliophora
- Phylum Sporozoa

Phylum Zoomastigina – flagella bearing

- Commonly called **<u>flagellates</u>**.
- <u>Absorb</u> food through their cell membrane.
- Found in <u>lakes</u>, <u>ponds</u>, or as <u>parasites</u> or <u>symbionts</u> of other organisms.
- Reproduction:
 - Sexually Via <u>Meiosis</u>
 - formation of gametes.
 - Asexually Via <u>Binary</u> <u>Fission</u>.

Fig. 1.3. Types of Binary fission in Protozoar.s. A. Irregular in Amoeba; B. Longitudinal in Euglena; C. Transverse in Paramecium.

Phylum Sarcodina: Protists with False Feet

- <u>Pseudopod</u> is Latin for "false foot", which is a temporary <u>extension</u> of the <u>cytoplasm</u>.
- This is used for <u>feeding</u> and <u>movement</u>.
- <u>Sarcode</u> is the root of the phylum name, it means "jelly".

Phylum Sarcodina Cont.

- Major family is the <u>Amoeba</u>.
 - Use pseudopods to move, called <u>amoeboid</u> <u>movement</u>.
 - Eats by surrounding its prey with <u>pseudopods</u> and <u>engulfing</u> it, called <u>Endocytosis</u> "Into the cell"

Other Sarcodina Examples

- <u>Radiolarians-</u> produce delicate <u>shells</u> of <u>silica</u>.
- Foraminiferas- secretes a shell of <u>Calcium</u> <u>Carbonate</u>.
 - Form <u>most</u> of the <u>ocean</u>
 <u>floor</u> soil, helped form most of the worlds oil deposits
 - Grit in our <u>toothpaste</u> 🙂
 - Make up the <u>white</u> cliffs of Dover

Zooplankton – Phylum Ciliophora

- As the name suggests, these are named for their **presence** of **<u>cilia</u>** (hair like projections) that produce **<u>movement</u>**.
- They are both <u>solitary</u> and <u>colonial</u>.
- The genus Paramecium is most common.
 - Reproduce asexually by <u>binary fission</u>.
 - Sexual reproduction via **conjugation**.

Phylum Sporozoa : Spore producing parasitic protists

- <u>Non</u> Motile
- All are **parasitic**
- <u>Complex</u> life cycles that involve more than one host.
- Reproduce using <u>spores</u>.
 - Spores attach to <u>host</u> cell, <u>penetrate</u> it, then <u>live</u> within it as a parasite.
 - Plasmodium causes <u>malaria</u> (see p 388, 18.10)
 - Plasmodium are <u>resistant</u> to some drugs, so <u>mosquito</u>
 <u>breeding</u> areas must be <u>controlled</u>.

Plasmodium Life Cycle

Harmful Relationships:

- <u>Plasmodium</u> (sporozoa) causes <u>Malaria</u>.
- <u>Trypanosoma</u> (Zoomastiginan) causes <u>African</u>
 <u>Sleeping Sickness</u>.
- <u>Entamoeba</u> (Sarcodinan) Causes <u>Amoebic</u>
 <u>Dysentry</u>.

Helpful Relationships:

- <u>Trychonympha</u> (Zoomastiginan) lives in <u>termite</u> <u>guts</u> and helps <u>digest cellulose</u> cell walls in wood.
- <u>Zooplankton</u> in ocean acts as food, part of the <u>food chain</u>.

Protista Table – 9 Phyla

Yes you will need to complete this table for marks to be handed in. The first 3 are done for you please write them in the table provided

Phyla Name	Туре	Movement	Reproduction	Feed
(1) Cilophora Pg. 384	Animal	Cilia	Asexual- BF Sexual – Conj	Cilia guide food to the oral groove and then into the gullet, once inside, food is digested buy enzymes in vacuoles and then circulated through the organism. © Squint more ©
(2) Zoomastigina Pg. 386	Animal	Flagella	Asexual – BF Sexual-Meiosis makes gametes	Absorb food through their cell membranes or can act as parasitic organisms.
(3) Sarcodina Pg. 389	Animal	Pseudopodia	Read coloring sheet. No don't copy that down its not the answer.	Endocytosis need I say more, you better find out what that word means.

Plant-Like Protists

- Phylum Euglenophyta
- Phylum Pyrrophyta
- Phylum Chrysophyta

Plantlike Protists

- Characteristics:
 - **<u>Unicellular</u>**, most are <u>motile</u>.
 - Contain <u>chlorophyll</u> for <u>photosynthesis</u>.
 - 3 phyla closely related to <u>algae</u>
 - 1 phyla closely related to **fungi**
 - Reproduce <u>asexually</u> via <u>binary</u> <u>fission</u>

Phylum Euglenophyta

- Flagellates with chloroplasts
- Most common is the <u>Euglena</u>.
 - 2 flagella in <u>front</u> end, larger one propels the cell <u>forward</u>.
 - Can also change shape and crawl, called <u>euglenoid</u> movement. (they have a special membrane and associated structures called a <u>pellicle</u>).
 - Red <u>eyespot</u> (primitive eye): helps to locate <u>brightest</u> areas.
 - More <u>light</u>= more <u>energy</u>.
 - Phototrophic <u>autotrophs</u> normally.
 - In <u>absence</u> of light they become saprophytic <u>heterotrophs</u>.

Phylum Pyrrophyta: Fire Protists

- Also called <u>Dinoflagellates</u>
- Mostly <u>photosynthetic</u>, some are <u>heterotrophs</u>
- Two <u>flagella</u> (one wraps like a <u>belt</u> around the middle, other one trails behind like a <u>tail</u>).
- Covered by two <u>thick plates</u> like armor.
- When <u>agitated</u> give off
 <u>bioluminescence</u> organic light.
- <u>Blooms</u> cause Red Tide.

Bioluminescence

sciencephotolibrai

Phylum Chrysophyta "golden plants"

- <u>**Diatoms</u>** are the most well known.</u>
- Reproduce <u>sexually</u>
- Some have <u>flagella</u>
- Most <u>solitary</u>, some <u>colonize</u>
- Some can live within the cell walls of <u>glass</u>
- <u>2000</u> species belong in the group Diatoms
- Cell walls are rich in <u>silicon</u>
- Shaped like a <u>petri</u> <u>dish</u>, one side fits snuggly into the other.
- Etched with a design, most <u>abundant</u> species in the <u>ocean</u>.

Harmful Relationships of Plant-like Protists

- Blooms
 - <u>Euglenophytes-</u> are able to increase in number rapidly, causing too much <u>waste</u>, depleting food sources they begin to <u>die</u> and add to the waste in the lake.
 - Causes the water to turn <u>green</u> in ponds/ lakes, cutting off the <u>sunlight</u> to marine plants.
 - **<u>Dinoflagellates</u>** cause Red Tide.
 - Toxin causes **paralysis** when infected shellfish are eaten.

Helpful Relationships of Plant-like Protists

- Symbiotic relationships
 - Coral + Dinoflagellates = Dino's get coral waste and coral get <u>photosynthesis</u> products from the Dino's.
 - Food Chain- <u>70</u>% of the earth's <u>photosynthesis</u> occurs on or near the ocean's surface.

Helpful Relationships of Plant-like Protists

Diatoms and manufacturing

- A new method of producing <u>paint</u> has been developed by Andrew Parker, professor of biology, and his team at Green College at Oxford University in England.
- This new method uses a much greener way to create iridescent pigments. This could be used for paint, cosmetics, and even holographic plastic.

Fungi-Like Protists

Phylum Acrasiomycota

Phylum Myxomycota

Phylum Slime Molds – Fungal like protists

 At one stage, they appear as <u>amoeba</u>-like cells, at another, they produce <u>mold</u>-like masses that give rise to <u>spores</u>.

Phylum Acrasiomycota :Cellular Slime Molds

- Spend most of their lives as **free** living **amoeba**-like cells.
- When food is <u>scarce</u>, cells <u>clump</u> together and act as a <u>single</u> organism.
- Masses of cells may <u>migrate</u> several centimeters.
- Produce a <u>reproductive</u> <u>structure</u> called a <u>fruiting body</u> (fungi term) that makes spores.
- <u>Spores</u> give rise to new <u>amoeboid</u> cells, cycle starts over again when the conditions are <u>suitable</u>.

Phylum Myxomycota: Acellular Slime Molds

- Begins life as an **<u>amoeboid</u>** cell.
- Later, produces a <u>plasmodia</u> which contains 1000's of <u>nuclei</u> enclosed in a <u>single</u> cell membrane. Nuclei are free to move throughout the entire structure.
- Produces fruiting bodies whose spores germinate into <u>flagellated</u> cells, that later produce the <u>amoeboid</u> cells.

Homeostasis in Protists

- How do protists obtain their energy?
 - Protists can either be autotrophic or heterotrophic
 - <u>Autotrophic</u> Phytoplankton these protists obtain their energy through photosynthesis.
 - <u>Heterotopic</u> Zooplankton most of these are free living and can be parasitic
 - <u>**Predators**</u> prey on other protists.
 - <u>Scavengers</u> feed on dead organisms or the waste of organisms

Homeostasis in Protists

- How do protists release energy?
 - Most protists are <u>aerobes</u>, that means that they respire.
 Some protists can live without <u>oxygen</u>, but only for short periods of time.
 - The ability for protists to survive without <u>complex</u> systems is related to their <u>body</u> size.
 - Protists require a higher <u>surface area</u> to <u>volume</u> ratio in order to exchange O₂ directly with the environment.
 - This limiting factor ensures that **protists** don't get very large.

Roles of Protists

- Protists may be <u>produces</u>, <u>consumers</u> or <u>decomposers</u>.
- Almost all protists serve as <u>food</u> for other organisms.
- Some protists can be <u>parasitic</u> to livestock, dogs, cats and humans.
- They cause <u>dysentery</u>, African sleeping sickness, <u>malaria</u>, and other diseases.

The Response to stimuli:

- <u>**Tropism</u>** movement in response to a stimulus.</u>
- Protists can <u>react</u> to tropisms in a negative or positive manner.
 - <u>Negative</u> Tropisms: areas of low oxygen, high temperature, and towards other objects that are NOT food.
 - **<u>Positive</u>** Tropisms: Food, certain chemicals and light
- Another tropism is call <u>Avoidance</u> Response

Important Terminology

- Paramecium can fire its <u>trichocysts</u> ("harpoon") to immobilize prey or to defend from predators.
- Some protists have a <u>contractile vacuole</u> which is used to expel excess <u>water</u> when it contracts.