Perfect Squares and Square Roots

What is a Perfect Square

- A perfect square is a number produced by multiplying the same number by itself.

Examples:

$$
\rightarrow 1^{2}=1 \times 1=1 \quad 4^{2}=4 \times 4=16
$$

$$
2^{2}=2 \times 2=4 \quad 5^{2}=5 \times 5=25
$$

$\rightarrow 3^{2}=3 \times 3=9$
$6^{2}=6 \times 6=36$

Exponential Form

- Exponential form takes the number and uses a subscript to represent how many times we multiply the number by itself.
- Example
$\rightarrow 2 \times 2=2^{2}$

Square Roots

-Square roots can never be of a negative number
-Square roots represented in exponential form and as a perfect square

- $100=10^{2}$
- $\sqrt{100}=10$

Factoring to

 determine the answer to a square root- This is an example of a perfect square, so the two factors are identical

What happens when we have a imperfect square

- There will be a coefficient
- Can you identify the coefficient?

The coefficient is in front of the root

Simplify Square Roots

Find Perfect Square

$$
\begin{aligned}
\sqrt{48} & =\sqrt{16} \times \sqrt{3} \\
& =4 \times \sqrt{3} \\
& =4 \sqrt{3}
\end{aligned}
$$

Find Prime Factors

$$
\begin{aligned}
\sqrt{48} & =\sqrt{2 \times 2 \times 2 \times 2 \times 3} \\
& =\sqrt{2 \times 2} \times \sqrt{2 \times 2} \times \sqrt{3} \\
& =2 \times 2 \times \sqrt{3} \\
& =4 \times \sqrt{3} \\
& =4 \sqrt{3}
\end{aligned}
$$

Examples and Practice

- Page 29 Activities
- Page 30 Examples 1 and 2
- Page 31 Practice \# 1 to 26 (evens), 27, 29 and 31

