

Math Review

Shapes

2D shapes

- It is a shape that would be classified as flat
- Examples:

What is a 2D shape?

- Square

- What Shape is this?
- It is a circle

Let's Practice naming shapes and look at their properties

- How do you know?
- It has no corners
- It has the same length and width
- What Shape is this?
- It is an oval

Let's Practice naming shapes and look at their properties

- How do you know?
- It has no corners
- It has a different length and width
- What Shape is this?
- It is an triangle

Let's Practice naming shapes and look at their properties

■ How do you know?

- It has 3 corners
- It has 3 sides
- It has 3 angles

How can we remember that triangle means 3?

- Let's consider some other words that contain "tri"
- Tricycle

- What does a tricycle have 3 of?
- 3 wheels
- Triceratops

- What does a triceratops have 3 of?
- 3 Horns

Let's try some trivia

- three related plays or novels.
- A: trilogy
- Examples: Lord of the Rings, The Hunger Games, The Divergent series.

■ Q: a three-legged stool, table, or stand used to hold things, such as a camera

- A:Tripod.
- What Shape is this?
- It is a rectangle

Let's Practice naming shapes and look at their properties

- What Shape is this?
- It is a square

Let's Practice naming shapes and look at their properties

- How do you know?
- It has 4 corners
- It has $\underline{4}$ angles
- It has $\underline{4}$ sides
- The length and width are the same
- What Shape is this?
- It is a trapezoid

Let's Practice naming shapes and look at their properties

- How do you know?
- It has 4 corners
- It has 4 angles
- It has $\underline{4}$ sides
- The top is shorter than the bottom
- The sides are at angles greater or less than 90 degrees to one another
- What Shape is this?
- It is a parallelogram

Let's Practice naming shapes and look at their properties

- How do you know?
- It has 4 corners
- It has 4 angles
- It has $\underline{4}$ sides
- The sides are at angles greater or less than 90 degrees to one another
- All 4 of these shapes had 4 sides and 4 angles
- These shapes are therefore classified as quadrilaterals

Let's consider the last four shapes

- A quadrilateral means that it is a shape with 4 sides
- Rectangle
- Square
- Trapezoid
- Parallelogram

- Quadrant:
- Definition: $1 / 4$ the circumference of a circle
- Quadruple:
- Definition: means to multiply by 4
- Therefore the word quad in math means

4

- What Shape is this?
- It is a pentagon

- How do you know?
- It has 5 corners
- It has $\underline{5}$ angles
- It has $\underline{5}$ sides
- Examples
- The Pentagon
- Black areas on a soccer ball
- Pentacle:

Definition: 5 pointed star

Let's try to define the following words and see if we know their meanings

- Pentane:
- Definition: a molecule that contains 5 carbons
- Pentathlon:
- Definition: A sporting event that involves 5 track and field events
- Therefore in math Penta means $\underline{5}$
- What Shape is this?
- It is a hexagon

Let's Practice naming shapes and look at their properties

- How do you know?
- It has 6 corners
- It has 6 angles
- It has $\underline{6}$ sides
- Examples
- Honey cones
- White areas on a soccer ball

- hexameter:
- Definition: a line of verse consisting of 6 metrical feet
- hexane:
- Definition: A molecule containing 6 carbons
- hexapod:
- Definition: an insect with six feet/legs
- Therefore in math hexa means $\underline{6}$
- What Shape is this?
- It is a heptagon

Let's Practice naming shapes and look at their properties

- How do you know?
- It has $\underline{\underline{7}}$ corners
- It has $\underline{7}$ angles
- It has $\underline{\underline{7}}$ sides
- Examples
- Some coins (50 pence)
- Pineapple (when cut)
- Gemstone cut
- heptameter:
- Definition: a line of verse consisting of 7 metrical feet

Let's try to define the following words and see if we know their meanings

- heptane:
- Definition: A molecule containing 7 carbons
- heptaploid:
- Definition: having seven times the monoploid number of chromosomes
- Therefore in math hepta means $\underline{7}$
- What Shape is this?
- It is a octagon

Let's Practice naming shapes and look at their properties

- How do you know?
- It has 8 corners
- It has 8 angles
- It has $\underline{8}$ sides
- Examples
- Most stop signs
- octopus:
- Definition: 8 legged marine animal
- octopod:

Definition: 8 legged marine animal

Let's try to define the following words and see if we know their meanings

- What Shape is this?
- It is a nonagon

Let's Practice naming shapes and look at their properties

- How do you know?
- It has 9 corners
- It has $\underline{9}$ angles
- It has $\underline{9}$ sides
- Examples
- Some coins
- Some Hot tubs

Let's Practice naming shapes and look at their properties

How long is a decade?
10 Years

- What Shape is this?
- It is a decagon

- How do you know?
- It has 10 corners
- It has 10 angles
- It has $\underline{10}$ sides
- Examples
- Liberia 10 dollar coin
- Some clocks
- What Shape is this?
- It is a hendecagon

- How do you know?
- It has 11 corners
- It has $\underline{11}$ angles
- It has $\underline{11}$ sides
- How do we know it is 11
- Hen = l
- Deca = 10
- So $10+1=11$
- What Shape is this?
- It is a dodecagon

- How do you know?
- It has 12 corners
- It has 12 angles
- It has $\underline{12}$ sides
- How do we know it is 12
- Do = 2
- Deca $=10$
- So $10+2=12$
- What Shape is this?
- It is a triskaidecagon

- How do you know?
- It has 13 corners
- It has 13 angles
- It has $\underline{13}$ sides
- How do we know it is 13
- Triskai = 3
- Deca $=10$
- So $10+3=13$
- What Shape is this?
- It is a tetrakaidecagon

- How do you know?
- It has 14 corners
- It has 14 angles
- It has $\underline{14}$ sides
- How do we know it is 14
- Tetrakai $=4$
- Deca $=10$
- So $10+4=14$
- What Shape is this?
- It is a pentadecagon

- How do you know?
- It has 15 corners
- It has 15 angles
- It has $\underline{15}$ sides
- How do we know it is 15
- Penta = 5
- Deca $=10$
- So $10+5=15$
- What Shape is this?
- It is a hexadecagon

- How do you know?
- It has 16 corners
- It has 16 angles
- It has $\underline{16}$ sides
- How do we know it is 16
- Hexa $=6$
- Deca $=10$
- So $10+6=16$
- What Shape is this?
- It is a heptadecagon

- How do you know?
- It has 17 corners
- It has $\underline{17}$ angles
- It has $\underline{11}$ sides
- How do we know it is 17
- Hepta = 7
- Deca $=10$
- So $10+7=17$
- What Shape is this?
- It is a octadecagon

- How do you know?
- It has 18 corners
- It has 18 angles
- It has $\underline{18}$ sides
- How do we know it is 18
- Octa = 8
- Deca $=10$
- So $10+8=18$
- What Shape is this?
- It is a Enneadecagon

- How do you know?
- It has 19 corners
- It has 19 angles
- It has $\underline{19}$ sides
- How do we know it is 19
- Ennea = 9
- Deca $=10$
- So $10+9=19$
- What Shape is this?
- It is a Icosagon

Let's Practice naming shapes and look at their properties

- How do you know?
- It has 20 corners
- It has $\underline{20}$ angles
- It has $\underline{20}$ sides
- In the classroom see how many shapes you can find.

■ List the shapes that you found and how you know they are that shape.

Scavenger hunt

Get into groups of 3

- The group with the most will receive a prize.

Prefixes and Their meanings

Prefixes	Number
Tri	3
Quad	4
Penta	5
Hexa	6
Hepta	7
Octa	8
Nona	9
Deca	10
Hendeca	11

Prefixes	Number
Dodeca	12
Triskaideca	13
Tetrakaidec a	14
Pentadeca	15
Hexadeca	16
Heptadeca	17
Octadeca	18
Enneadeca	19
Icosa	20

Class Work

■ Complete the worksheet(s) provided by the end of the block

- There will be a quiz on shapes at the beginning of next class please be on time.

References:

1. https://quizlet.com/4230929/flashcards (tri quizlet)
2. http://www.thefreedictionary.com/quadruplicating (definition of quadruplicating)
3. http://www.thefreedictionary.com/quadrant (definition of quadrant)
4. https://www.google.ca/search?q=hexagons+in+real+life\&safe=strict\&client=firefox-b$a b \& d c r=0 \& t b m=i s c h \& t b o=u \& s o u r c e=u n i v \& s a=X \& v e d=0$ ahUKEwip7PDquO7YAhVF22MKHZtVBIYQsAQIKQ \&biw=1440\&-bih=679 (hexagon examples)
5. https://www.google.ca/search?q=heptagon+examples+in+real+life\&safe=strict\&client=firefox-bab\&dcr=0\&tbm=isch\&tbo=u\&source=univ\&sa=X\&ved=0ahUKEwjB9Y 8ue7YAhVBMGMKHTKEAzAQQAQIJ g\&biw=1440\&bih=679\#imgrc=lzvYcenYlRIygM: (heptagon examples)
6. https://study.com/academy/lesson/nonagon-definition-shape.html (nonagon)
7. https://www.google.ca/search?q=decagon+examples+real+life\&safe=strict\&client=firefox-bab\&dcr=0\&tbm=isch\&tbo=u\&source=univ\&sa=X\&ved=0ahUKEwjnnfqSve7YAhVCwWMKHTgwBpwQsAQIJ g\&biw= 1440\&-bih=679 (decagon examples)
8. https://quizlet.com/21280956/polygons-1-20-sides-flash-cards/ (polygons - 1-20 sides)

References:

9. http://math.wikia.com/wiki/Hendecagon (Hendecagon)
10. https://study.com/academy/lesson/dodecagon-sides-area-angles.html (dodecagon)
11. https://en.wiktionary.org/wiki/triskaidecagon (triskaidecagon)
12. http://etc.usf.edu/clipart/37300/37390/14-gon 37390.htm (tetrakaidecagon)
13. http://www.kidsmathgamesonline.com/pictures/shapes/pentadecagon.html (pentadecagon)
14. https://commons.wikimedia.org/wiki/File:Regular hexadecagon.svg (hexadecagon)
15. https://commons.wilkimedia.org/wiki/File:Regular heptadecagon.svg (heptadecagon)
16. http://math.wilkia.com/wilki/Octadecagon (octadecagon)
17. https://commons.wikimedia.org/wiki/File:Regular enneadecagon.svg (enneadecagon)
18. http://www.kidsmathgamesonline.com/pictures/shapes/icosagon.html (icosagon)

References:

19. http://www.thefreedictionary.com/pentacle (pentacle)
20. http://www.thefreedictionary.com/pentane (pentane)
21. http://www.thefreedictionary.com/pentathlon (pentathlon)
22. https://www.merriam-webster.com/dictionary/hexapod (hexapod)
23. https://www.merriam-webster.com/dictionary/hexane (hexane)
24. https://www.merriam-webster.com/dictionary/hexameter (hexameter)
25. https://www.merriam-webster.com/dictionary/heptaploid (hemptaploid)
