

Section 4.3 Balancing Chemical Equations

Pages 203 to 211

Chemical Reactions

■Result in chemical changes

New substances are created

No new matter is created or destroyed; atoms are just rearranged.
-Reactants \rightarrow Products

- In chemical reactions, atoms are neither created nor destroyed.
-Mass of reactants = mass of products
-This is why the equation for every chemical reaction needs to be balanced

+How are Chemical Reactions Written

- A word equation:

-The simplest form of a chemical equation

- Examples:
- Nitrogen monoxide + oxygen \rightarrow nitrogen dioxide
- Potassium metal + oxygen gas \rightarrow potassium oxide

+ Word Equations Continued

- Require careful examination
- Be careful of polyatomic elements
- For Example: P_{4} and S_{8}

■ Be careful of diatomic elements ("special seven")
$-\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{~N}_{2}, \mathrm{Cl}_{2}$

- Acronym: HOFBrINCl
- Common names for molecules containing hydrogen
- Examples
- methane $=\mathrm{CH}_{4}$
- glucose $=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
- ethane $=\mathrm{C}_{2} \mathrm{H}_{6}$
- ammonia $=\mathrm{NH}_{3}$

+How are Chemical Reactions Written

■A symbolic equation:
-Example
$-2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$

Coefficients

- Indicate the ratio of compounds in the reaction.

State of matter
(aq) = aqueous/dissolved in water
(s) = solid
(e) = liquid
(g) = gas

Symbolic Equations Continued

■ Skeleton equation
shows the formulas of the elements/compounds, but not quantities

- Example:
$\square \mathrm{K}+\mathrm{O}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{O}$

Symbolic Equations Continued

- Balanced chemical equation
- shows the formulas of the elements/compounds including quantities
- Always use the smallest whole-number ratio.
- Example:
$-4 \mathrm{~K}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}$

Steps for

 Balancing Chemical Equation1. Count the number of atoms for the reactants and products
2. Balance compounds first and elements last.
3. Balance one compound at a time.
4. Only add coefficients; NEVER change subscripts.
5. If H and O appear in more than one place, attempt to balance them LAST.
6. Polyatomic ions (such as $\mathrm{SO}_{4}{ }^{2-}$) can often be balanced as a whole group.
7. Always double-check after you think you are finished.

Practice Problems

$-\mathrm{Fe}+\mathrm{Br}_{2} \rightarrow \mathrm{FeBr}_{3}$
$-\mathrm{Sn}\left(\mathrm{NO}_{2}\right)_{4}+\mathrm{K}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{KNO}_{2}+\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{4}$
$-\mathrm{C}_{2} \mathrm{H} 6+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

