

Section 4.3 Balancing Chemical Equations

Pages 203 to 211

+ Chemical Reactions

Result in chemical changes

New substances are created

No new matter is created or destroyed; atoms are just rearranged.

Reactants \rightarrow Products

+ The law of conservation of mass:

- In chemical reactions, atoms are neither created nor destroyed.
- Mass of reactants = mass of products
- This is why the equation for every chemical reaction needs to be balanced

+How are Chemical Reactions Written

- A word equation:
- The simplest form of a chemical equation
 Examples:
 - Nitrogen monoxide + oxygen \rightarrow nitrogen dioxide
 - Potassium metal + oxygen gas \rightarrow potassium oxide

+ Word Equations Continued

- Require careful examination
 - Be careful of polyatomic elements
 - For Example: P_4 and S_8
 - Be careful of diatomic elements ("special seven")
 - H₂, O₂, F₂, Br₂, I₂, N₂, Cl₂
 Acronym: HOFBrINCl
 - Common names for molecules containing hydrogen
 - Examples
 - methane = CH_4
 - glucose = $C_6 H_{12} O_6$
 - ethane = C_2H_6
 - ammonia = NH₃

	1			
	1 + H			18
14	1.0 15	16	17	2 0 He Helium
6 C Carbon 12.0	7 3– N Nitrogen 14.0	8 2- O Oxygen 16.0	9 – F Fluorine 19.0	4.0 10 0 Ne Neon 20.2
14	15 3-	16 2–	17 –	18 0
Si	P	S	Cl	Ar
Silicon	Phosphorus	^{Sulphur}	Chlorine	Argon
28.1	31.0	32.1	35.5	39.9
32 4+	33 3–	34 2-	35 –	36 0
Ge	As	Se	Br	Kr
Germanium	Arsenic	Selenium	^{Bromine}	Krypton
72.6	74.9	79.0	79.9	83.8
50 4+	51 3+	52 2	53 –	54 0
Sn 2+	Sb 5+	Te	I	Xe
Tin	Antimony	Te l urium	Iodine	Xenon
118.7	121.8	127.6	126.9	131.3
82 2+	83 3+	84 2+	85 –	86 0
Pb 4+	Bi ⁵⁺	Po	At	Rn
Lead	Bismuth	Polonium	Astatine	Radon
207.2	209.0	(209)	(210)	(222)

+How are Chemical Reactions Written

■A symbolic equation: ■Example $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$

Coefficients

 Indicate the ratio of compounds in the reaction. State of matter

(aq) = aqueous/dissolved in water

(s) = solid

(l) = liquid

(g) = gas

Symbolic Equations Continued

Skeleton equation

shows the formulas of the elements/compounds, but not quantities

• Example: • $K + O_2 \rightarrow K_2O$

Symbolic Equations Continued

Balanced chemical equation

- shows the formulas of the elements/compounds including quantities
- Always use the smallest whole-number ratio.
- Example: • $4K + O_2 \rightarrow 2K_2O$

Steps for Balancing Chemical Equation

- 1. Count the number of atoms for the reactants and products
- 2. Balance compounds first and elements last.
- 3. Balance one compound at a time.
- 4. Only add coefficients; NEVER change subscripts.
- 5. If H and O appear in more than one place, attempt to balance them LAST.
- 6. Polyatomic ions (such as SO_4^{2-}) can often be balanced as a whole group.
- 7. Always double-check after you think you are finished.

■ Fe + Br₂ → FeBr₃ ■ Sn(NO₂)₄ + K₃PO₄ → KNO₂ + Sn₃ (PO₄)₄ ■ C₂H6 + O₂ → CO₂ + H₂O