5.1 Acids and Bases

- Many familiar compounds
 - Classification based on chemical composition

- can be very dangerous
 - corrosive
 - NEVER try to identify an acid or base by taste or touch!

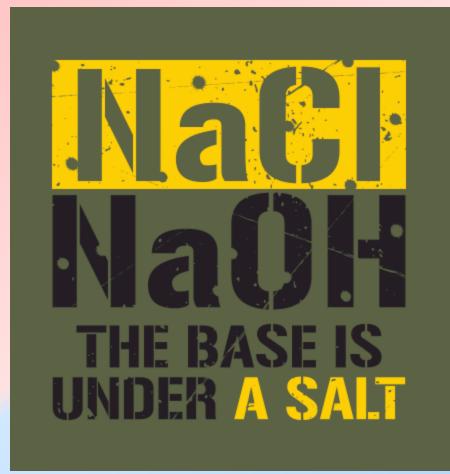
Understanding pH

 The strength of acids and bases is measured on the pH scale.

Understanding pH

- Each decrease of 1 on the pH scale indicates
 10 × more acidic
 - For example, pH 4 is 10 times more acidic than pH 5.
 - pH 3 is 1000 times more acidic than pH 6

Determining pH


pH cannot be determined by sight.

Litmus paper

- pH is measured by chemicals called indicators or by a pH meter that measures the electrical conductivity of the solution.
- pH indicators change colour
 - Litmus paper.
 - Blue = basic (pH above 7)
 - Red = acidic (pH below 7)
 - Universal indicators contain many indicators that turn different colours at different pH values (liquid or paper)

Determining pH continued

- A pH meter uses electrical probes to measure how solutions conduct electricity.
- Indicators change colour at different pH values
 - Bromothymol blue for pH 6 7.6
 - phenolphthalein for pH 8.2 10.
 - natural indicators include beets and cabbage

(c) McGraw Hill Ryerson 2007

Acids

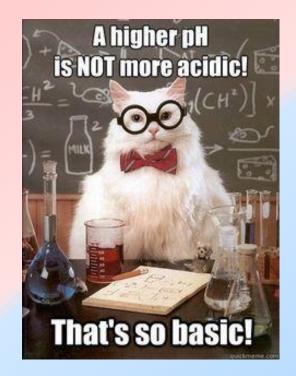
- Acids often are written with symbol (aq) = aqueous = dissolved in water.
- The chemical formula of an acid usually starts with hydrogen (H) sometimes with carbon (C).
 - HCl_(aq) = hydrochloric acid
 - HNO_{3(aq)} = nitric acid
 - CH₃COOH_(aq) = acetic acid

Sulfuric acid is used in batteries.

Naming Acids

– Hydrogen + …-ide = hydro…ic acid

- HF_(aq) = hydrogen fluoride = hydrofluoric acid
- Hydrogen + ...-ate = ...ic acid
 - H₂CO_{3(aq)} = hydrogen carbonate = carbonic acid
- Hydrogen + ...-ite = ...ous acid
 - H₂SO_{3(aq)} = hydrogen sulphite = sulphurous acid


Bases

- The chemical formula of a base usually ends with hydroxide (OH).
- Bases are often written with the symbol (aq) = aqueous = dissolved in water.
- Bases can be gentle or very caustic.
- Examples of common bases:
 - NaOH_(aq)
 - Mg(OH)_{2(aq)}
 - Ca(OH)_{2(aq)}
 - NH₄OH_(aq)

Production of lons

- Acids and bases can conduct electricity because they release ions in solution.
 - Acids release hydrogen ions, H⁺.
 - Bases release hydroxide ions OH⁻.

pH**4**

Strong Acids

White Bread

Alcohol

Sugar

Mild Acids

Meat/Fish

Legumes

Nuts

Dairy

Vegetables

Avocados

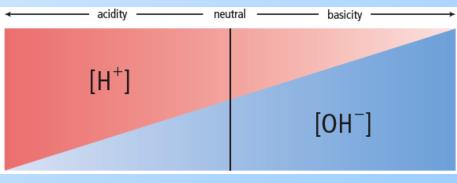
Almonds

pH10

Asparagus

Cayenne Pepper

Melons



Kelp

Production of lons

- The pH of a solution refers to the concentration of ions it has.
 - Square brackets are used to signify concentration, [H⁺], [OH⁻]
 - High [H⁺] = low pH, very acidic
 - High [OH⁻] = high pH, very basic
 - A solution cannot have BOTH high [H⁺] and [OH⁻]; they cancel each other out and form water. This process is called neutralization.
 - $H^+ + OH^- \rightarrow H_2O$

Properties of Acids and Bases

Table 5.6 Properties of Acids and Bases		
Property	Acid	Base
Taste CAUTION: Never taste chemicals in the laboratory.	 Acids taste sour. Lemons, limes, and vinegar are common examples. 	 Bases taste bitter. The quinine in tonic water is one example.
Touch CAUTION: Never touch chemicals in the laboratory with your bare skin.	 Many acids will burn your skin. Sulfuric acid (battery acid) is one example. 	 Bases feel slippery. Many bases will burn your skin. Sodium hydroxide (lye) is one example.
Indicator tests	 Acids turn blue litmus paper red. 	 Bases turn red litmus blue.
	 Phenolphthalein is colourless in an acidic solution. 	 Phenolphthalein is colourless in slightly basic solutions and pink in moderate to strongly basic solutions.
Reaction with some metals, such as magnesium or zinc	 Acids corrode metals. 	No reaction
Electrical conductivity	Conductive	Conductive
рН	Less than 7	More than 7
Production of ions	 Acids form hydrogen (H⁺) ions when dissolved in solution. 	 Bases form hydroxide (OH⁻) ions when dissolved in solution.